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Abstract

This paper presents a shear stress based evolutionary algorithm for the cross-section design of shafts subject to
torsion. In this method, finite element analysis is employed to find the shear stress distribution throughout the cross-
sectional area of the shaft. To seek a full stress or iso-strength design, two basic procedures are developed in this paper;
either progressively removing the least efficient material from the design domain or gradually shifting material from the
least efficient (under-utilized) location to the most efficient (over-utilized) location while keeping the cross-sectional area
constant. The former leads to the remaining material being more effectively utilized and the latter results in the material
being more intelligently redistributed. The method proves to be simple in its physical concept and mathematical op-
erations, and easy for computer implementation. A number of typical examples demonstrate that the proposed ap-
proach is effective in solving design problems for both simply-connected and multiply-connected cross-sections,
involving reshaping of both interior and exterior boundaries. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Structural optimization aims at achieving the best structural performance and material efficiency while
satisfying certain constraints. In the past two decades, significant progress has been made in this area for a
wide range of physical topics. The problem covered by this paper is the cross-sectional shape optimization
of elastic shafts in torsion. As well as having significance from a purely mathematical point of view, such a
problem is also of direct practical application in mechanical, civil, automotive and aeronautical engi-
neering.

As a typical example of structural optimization, shape design of the torsional shaft has attracted ex-
tensive attention since the late 1940s. The earliest result appears to be Polya’s proof (Polya, 1948) via a
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regularization approach in 1948 that a circular bar has the highest torsional stiffness among all singly
connected convex geometry of a given area. Furthermore, Polya and Weinsten (1950) showed that in the
case of multiply connected cross-sections, a ring bounded by two concentric circles has the highest torsional
stiffness. The same results were later proven by Banichuk (1976) using variational calculus. During the 70s
and 80s, Karihaloo and his colleagues (Banichuk and Karihaloo, 1976; Parbery and Karihaloo, 1977, 1980
and Karihaloo and Hemp, 1983, 1987) conducted a series of analytical studies on the multi-purpose op-
timization of cross-sectional profiles for combined torsional and flexural rigidity. With the development of
new composite materials, torsional shafts composed of multiple materials with non-homogeneous and
anisotropic properties have also been widely investigated (Adali, 1981; Lurie et al., 1982; Mioduchowski
et al., 1989 and Burns and Cherkaev, 1997).

One common point of the above mentioned research has been to solve the governing equation analyt-
ically. Although these solutions have significantly advanced the design theory of shafts and provided the
benchmarks, there still exist difficulties in handling some more practical situations with complex geometric
constraints and connectivity variations. For this reason, various numerical techniques have been developed
by combining finite element (FE) methods (Dems, 1980; Hou and Chen, 1985 and Schramm and Pilkey,
1993) or more recently boundary element methods (Mota Soares et al., 1984; Gracia and Doblare, 1988 and
Schramm and Pilkey, 1994) with mathematical programming techniques. In these numerical approaches,
nodal coordinates or other boundary parameters are usually treated as the design variables. A cycle of FE
or boundary element calculation, followed by sensitivity or other gradient calculations and mathematical
programming is iteratively carried out until an optimal shape is found. Due to the suitability of finite el-
ements and boundary elements to such complicated problems, this approach has shown significant ad-
vantages over the classical methods. To implement such procedures, however, gradient information,
automatic remeshing and suitable non-linear programming algorithms are needed. These usually require
considerable mathematical and computational effort. The latest progress made by Kim and Kim (2000)
showed a successful extension of the homogenization method (Bendsee, 1995) to the torsion problem, in
which the remeshing process has been avoided.

This paper proposes a simple rule-based evolutionary structural optimization (ESO) procedure to re-
solve the traditional torsion shape and topology optimization problems. This approach employs finite el-
ement analysis (FEA) to determine the shear stress distribution for regions subject to torque. From the
strength point of view, an excessive stress could reflect a potential structural failure while a low stress may
mean an inefficient usage of material. Ideally, the stress levels throughout the entire design domains of the
section are expected to be as close as possible to each other. This concept leads to a judgment, on the
available design space of the cross-section, about which locations should have material present and which
locations should have material removed. Like other numerical approaches, the optimum is only achieved in
an iterative fashion consisting of two basic steps: FEA and modification of material distribution. Since the
analysis region has been divided into many small elements, the material addition or subtraction can be
simply represented by adding or removing elements in the FE model. In the computation, the property
types of the elements are treated as design variables while shear stress levels of the element are considered as
the optimality criterion. This does not require extra gradient information for mathematical programming,
and it also avoids the use of intricate remeshing procedures. In this sense, the ESO method is simpler in its
computer implementation and more flexible in its engineering applications.

2. Problem formulations and optimality criterion
In order to seek an optimum shape of the torsion section, it is essential to determine the structural

response of torsion systems. From the Saint Venant theory of torsion, the elastic deformation of the sec-
tions can be described by Poisson’s equation
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Fig. 1. Multiply connected design domain.

d/10dp\ o[ 1 3 B
wlaa)amlaa) -0 W

and the Dirichlet-type boundary conditions as illustrated in Fig. 1,

¢ = 0’ (xa ) € Fm
{ 6—C. (el @)

where ¢ represents the Prandtl stress function, 6 is the angle of twist per unit length, I', and
I'; i=1,2,...,m) stand for the exterior and interior boundaries (m is the number of inner boundaries),
and G, G, respectively denote the shear moduli corresponding to x and y directions.

This is one form of the common elliptic equation in mathematical-physics. Although Egs. (1) and (2) are
of significant mathematical and physical interest and despite great efforts been devoted to solve them over
the last two centuries, it is by no means easy to find theoretical or analytical solutions, in particular for
complex geometry and multiple connectivity. To cope with such intricate problems as design optimization
in which the shape or topology of analyzed region is continuously being modified, the FE or other nu-
merical analysis methods are usually needed (Hinton and Owen, 1981; Huston and Passerello, 1984 and
Rao, 1989).

In traditional solutions, the optimal problems are constructed either to minimize the weight or volume,
or the cross-sectional area of a shaft subject to a prescribed torsional rigidity constraint (Banichuk and
Karihaloo, 1976; Parbery and Karihaloo, 1977, 1980 and Karihaloo and Hemp, 1983, 1987) as

{min A =min [ [,dxdy, 3)
st. 2 [ [, ¢dxdy—R" >0

or equivalently, to maximize the torsional rigidity subject to a prescribed weight, volume, or a given cross-
sectional area constraint (Dems, 1980; Adali, 1981; Lurie et al., 1982; Mota Soares et al., 1984; Hou and
Chen, 1985; Gracia and Doblare, 1988; Mioduchowski et al., 1989; Schramm and Pilkey, 1993 and Burns
and Chekaev, 1997) as

max R =max; [ [, ¢pdxdy, )
s.t. [ [, dxdy —4* =0,

where R = % J J, #dxdy is the torsion rigidity, and 4" and R* denote the imposed restrictions on cross-
sectional area (in unit of m?) and torsional rigidity (in unit of N/arc) respectively.

Obviously, such optimizations mainly reflect the rigidity aspects of a design, where the material is re-
distributed to ensure the stiffest design. In other circumstances, the designer may wish to impose a strength
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criterion, e.g., to find an evenly or fully stressed design. For this purpose, an appropriate reference criterion
related to material stress level is needed. FEA, directly provides the solution for nodal stress function ¢ and
subsequently the elemental shear stress components t,. = 0¢/0y and 7,, = —0¢/0x. One of the most fre-
quently used measures of the material shear strength can be the resultant of shear stress components as
(Hinton and Owen, 1981)

As a result, the resultant shear stress level is adopted to estimate the efficiency of material usage from the
iso-strength standpoint in this study. A greater (or a smaller) elemental resultant stress level implies a higher
(or a lower) efficiency of material usage.

3. Evolutionary structural optimization procedure
3.1. Procedure for the volume reduction

Typically, after FEA, the shear stress levels in some elements are quite lower than others. From the
viewpoint of iso-strength or even stress, it is logical that such less efficiently utilized material should be
gradually removed from the structure. In the ESO method, the criterion of element removal is determined
by comparing elemental resultant shear stress ¢ with the highest t™* or the mean 7 value over the entire
analysis domain, i.e. an element is removed if it satisfies

7° < RRSS X _Emax7 or t° < RRSS X T, (6)

where RRgg is called Rejection Ratio. The process of the element removal is repeated using the same value
of RRgs until there are no more elements that can be removed. This means that an ESO Steady State (SS)
has been reached, by which the lowest stress level within the design domain has become greater than a
certain percentage of the maximum or mean level. In order for the optimization process to continue at this
stage, an Evolutionary Rate (ER) is introduced so that

RRss, = RRgs + ER. (7)

With the increased rejection ratio, the cycle of FEA and element removal takes place again until a new
steady state is reached. A typical value for ER is around 1% to ensure a smooth change between two steady
states.

As formulated in Eq. (2), in order to solve the boundary value problems of the elliptical Eq. (1), the
conditions of the outer and the inner boundaries need to be considered separately. When the elements are
removed from the outer boundary I',, the stress function ¢, at the nodes of newly shaped boundary should
always be updated to zero. This can be simply implemented by imposing the stress functions at all nodes of
any removed element to zero; When the elements are removed from any old inner boundary or from the
remaining interior regions of solid, the nodal stress functions ¢, (i = 1,2,...,m) at the inner boundaries
need to be set to some specific constants C; (i = 1,2,...,m). Obviously, this raises a difficulty in deter-
mining such boundary constants (Hinton and Owen, 1981). For this reason, element removal cannot di-
rectly follow traditional ESO procedure (Xie and Steven, 1993, 1997 and Li et al., 1999b). Furthermore, it is
worth noticing that the former does not change the connectivity of the design domain, whereas the latter
could. Generally speaking, the design of a multiply connected solid provides more extensive practical
significance in enhancing structural performance and reducing material volume.
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In multiply connected designs, to overcome the difficulty of determining the boundary stress functions, a
soft kill technique proposed by Hinton and his colleagues (Hinton and Sienz, 1995) is adopted herein,
whereby any internal hole is assumed to compose of a material with relatively low shear moduli G, G, (say
1/1000 of the moduli of the solid material). In computation, the degraded modulus elements have thus
negligible significance to the torsion capacity, and are therefore regarded as void in the structure. Theo-
retically, this makes the structure to remain singly connected, in which case, the stress function constants of
interior boundaries are no longer required. In practice, the treatment can be easily implemented via only
assigning the property value of the candidate elements to a prescribed low value. Simple computer ex-
periments reveal that such a “soft” core strategy does present a constant value of ¢; on an internal
boundary.

For clarification, the torsion ESO procedure is organized as follows:

Step 1: Discretize the cross-sectional area using a dense FE mesh; define ESO driving parameter ER and
RRy;

Step 2: Carry out a FEA to solve the boundary value problem of Egs. (1) and (2);

Step 3: Assign the shear moduli of candidate elements to a prescribed low value if their shear stress levels
satisfy equation (6);

Step 4: If a steady state is reached, increase RRgs by ER as Eq. (7) and set SS = SS + 1; repeat step 3;
Otherwise, repeat steps 2 to 3 until an optimum is attained.

3.2. Procedure for the constant volume

In the previous situation, the optimization process was carried out by progressively removing least ef-
ficient material from the structure. Therefore, the total weight or the volume of the structure was gradually
reduced during the evolutionary process. Sometimes, however, a designer may wish to improve the per-
formance of a structure while keeping its weight (or volume or cross-section area) constant. This can be
achieved by shifting material from the ‘strongest’ location to the ‘weakest’ location in a volume conserving
manner. Through such a process, the less efficient (under-utilized) material becomes more efficient than
before (over-utilized) until the best possible material distribution is attained.

To implement the procedure, an appropriate initial shape is modeled, where the solid and void regions
are represented by a relatively high and a relatively low material property respectively. In terms of the shear
stress levels as identified in Eq. (6), a small number of under-utilized elements are removed from the torsion
section by switching their material property to the void one. Meanwhile, the same number of void elements
with the highest stress levels are switched to the solid property. As a result, this process maintains the
number of solid elements unchanged at each iteration.

It is worth pointing out that, in this process, although the void elements are theoretically expected to
carry no torque, the numerical computation always results in a certain stress level due to the non-zero void
material property. In most of the void elements, such virtual stress levels are close to zero except for those
connected to solid ones where an appropriate extrapolation is automatically achieved to maintain a con-
tinuous change of torsion field in FE computation. The high virtual stresses in such attachment elements
indicate the need to increase the solid material. In this sense, the virtual stress levels form a criterion to
justify which void elements should be switched to solid ones.

For clarification, the torsion ESO procedure subject to the constant volume/cross-sectional area is given
as follows:

Step 1: Discretize the design domain of cross-sectional area using a dense FE mesh; the initial solid and
void regions are represented by high or low shear moduli respectively, and define ESO driving
parameter ER and RR;
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Step 2: Carry out a FEA to solve the boundary value problem of Egs. (1) and (2);

Step 3: Switch the shear modulus of candidate solid elements to the void one if their shear stress levels
satisfy Eq. (6), and then change a number of void elements with the highest virtual stress levels to
solid ones while maintaining the cross-sectional area unchanged;

Step 4: If a steady state is reached, increase RRgs by ER as Eq. (7) and set SS = SS + 1; repeat step 3;
Otherwise, repeat steps 2 to 3 until an optimum is attained.

4. Illustrative examples

To demonstrate the torsion ESO procedures, five typical and practical design examples of torsional
shafts are presented here. The evolutionary processes for all examples are driven by the initial rejection
ratio of RRy = 0% and the evolution rate of ER = 1%. In the pictures shown below, the black or dark areas
represent the remaining solid elements and the small dots represent the nodes of the initial FE model. In all
design processes, the twist angle per unit length is maintained at § = 0.5°, regardless of changes in the
material volume or distribution.

4.1. Benchmarking example subject to area reduction

In the first example, the initial design domain is fully populated with solid elements in a square of
80 x 80 mm?. A mesh of 40 x 40 four node quadrilateral elements is adopted to model the analysis domain
as illustrated in Fig. 2(a).

4.1.1. Case 1: Exterior boundary design
As the first case, the element removal is limited to the outer boundary only. Therefore, the entire evo-
lution process does not change the connectivity of the analyzed cross-section. Figs. 2(b)—(d) display the

a)

g b)

_‘____

c)

Fig. 2. Exterior boundary design via element removal: (a) initial design model, (b) ¥/} = 90%, iteration 18 or SS =12, (¢)
V[ Vy = 80%, iteration 36 or SS = 18 (form a circular profile) and (d) V'/V, = 60%, iteration 57 or SS = 21 (maintain circular profile).
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Fig. 3. Evolution histories of the resultant shear stresses.

process of material removal at the volume ratios of 90%, 80% and 60% respectively (the ratio of current
solid volume/area to the initial solid volume/area).

To monitor the stress levels on the design boundary, the evolution histories of the maximum, mean and
minimum shear stresses are plotted in Fig. 3. As the less stressed material is progressively removed from the
section, it can be seen the difference between maximum and minimum stresses gets smaller and smaller until
a circular outer profile is formed at iteration 36, in which the volume ratio and steady state number cor-
respond to 80% and 18. After that, the deviation between the maximum and the minimum stress levels
becomes relatively stable. As a result, a series of circular profiles with different sizes is generated as shown in
Fig. 2(c) and (d). Theoretically, the deviation between the maximum and the minimum should be equal to
zero for an evenly stressed shape. However, for a fixed grid approach like ESO, it is hardly possible to
obtain such a perfect iso-stressed profile due to the approximation of the smooth boundary by a jagged
profile and the imposition of the non-smooth boundary condition. Consequently, a constant deviation has
indicated a stable state for the shaped profiles. Besides, from Fig. 3 one can also find that an ESO Steady
State always appears at a stage with the minimum shear stress difference among all iteration steps between
two Steady States. This implies that each ESO steady state can be an optimized solution.

On the other hand, although such optimal process is driven by the criterion of the shear strength, the
result is also found to be in good agreement with the rigidity criterion by Polya (1948), in which a circular
bar proves to have the highest torsional stiffness among all singly connected convex geometry. This means
that a fully stressed design and a most rigid design share the same optimum profile. The following examples
will provide more evidence on such an interesting feature.

4.1.2. Case 2: Interior boundary design

To observe the formation of multiply-connected sections, in this case, any possible internal boundary is
allowed to be created but the outer boundary is preserved unchanged. This can be achieved by gradually
switching the solid inner elements to void ones on the basis of stress levels. At the same time, the elements
on the outer perimeter are unavailable for alteration. Fig. 4(a) and (b) display the process of internal
material removal at volume ratios of 80% and 60%. It can be seen that when an inner profile is far from the
outer boundary, a circular shape is obtained, but when the inner profile approaches to the exterior
boundary, an approximate constant thickness profile emerges, which is consistent with the ‘“shear flow”
theory of thin walled tubes.

4.1.3. Case 3: Design for both exterior and interior boundaries
As the third example, both exterior and interior boundaries are allowed to change. Fig. 5(a)—-(d) show
the process of material removal at several specific volume ratios and Fig. 6 plots the evolution histories of
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Fig. 4. Interior profile design via material removal: (a) V/V, = 80%, iteration 37 or SS = 20 (form a circular hole) and (b) V' /¥, = 60%,
iteration 62 or SS = 25 (form an offset profile of outer boundary).

Fig. 5. Both inner and outer boundary design via element removal: (a) ¥ /¥, = 80% (steady state 17), (b) ¥/ = 60% (steady state 23),
(c) V/Vo = 50% (steady state 28) and (d) V /¥, = 42% (steady state 29).

the shear stresses. It can be observed that, as more and more inefficient material is removed from the
structure, the deviation between the maximum and the minimum stresses becomes smaller and smaller.
During the optimization process, the maximum stress progressively reduces while the minimum stress
gradually increases. At a certain stage (around V' /V, = 42%), the minimum stress reaches its extreme and
no longer increases. At this point, a circular ring is formed as shown in Fig. 5(d). Afterwards, both the
maximum and the minimum stresses decrease in an approximately constant ratio except for the last few
iterations, which represents a stable state where the stresses on the design boundaries are almost uniform.
As a result, a series of rings with different sizes are produced. In the last few iterations, the drastic changes
in stress deviation and rigidity just indicate a non-stable state, in which too many elements have been
removed. As a result, with so few elements remaining, the zig-zag boundary causes significant shear stress
jumps.
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Fig. 6. Evolution histories of shear stresses.

From Polya and Weinsten’s proof (Polya and Weinsten, 1950), in the cases of multiply connected cross-
sections, a ring bounded by two concentric circles has the highest torsional stiffness. It is interesting to
notice that the result produced from the fully stressed criterion is in excellent agreement with such a rigidity
criterion. To observe the rigidity change, the relation between rigidity and volume is plotted in Fig. 7. In the
early stages of evolutionary material removal, the volume reduction exceeds the rigidity reduction.
Therefore the torsional stiffness efficiency (stiffness/area) of the section grows with the material removal.
This results in equal thick walled geometry being formed progressively. However, after a certain volume
ratio, the rigidity reduction gradually overtakes the volume reduction. It is interesting to note that the
extreme of the rigidity—volume curve appears at the volume ratio of 60%, which corresponds to the to-
pology with an equal thick wall as shown in Fig. 5(b) rather than the annulus as shown in Fig. 5(c) and (d).
This is not in contradiction to Polya and Weinsten’s proof rather, for a given area, when there is no
limitation to design space, a perfect thin ring always gives the optimum rigidity for multiply-connected
topologies. The design case in Section 4.2.3 of the next example will demonstrate this point better. In the
present example, however, the evolution process is considerably affected by the design domain. It will be
shown that only when the rejection ratio reaches a certain level, such influence can be excluded. For this
reason, the rigidity—volume curve only provides an indication of rigidity efficiency subject to a specific
design space.
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Fig. 7. Evolution histories of rigidity vs volume.
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4.2. Benchmarking example subject to constant volume

In this example, some initial guesses of the design shapes are modeled in terms of solid elements and void
elements respectively. Similarly to the previous example, the design domain is constrained with a square of
80 x 80 mm?. A mesh of 40 x 40 four node quadrilateral elements is used to discretize the analysis domain.

4.2.1. Case 1: Exterior boundary design

In this case, the exterior boundary is considered as the design target. A greek cross shape is given as the
initial design as illustrated in Fig. 8(a). In the evolution process, the solid elements on the outer boundary
are progressively moved from under-utilized (lowly stressed) locations to over-utilized (highly stressed)
locations. Fig. 8(b)—(d) show the modification process of the exterior boundary. It can be seen that the
outer boundary gradually forms a circle as shown in Fig. 8(d).

The deviation between the maximum and minimum boundary stress is plotted in Fig. 9. It can be seen
that, as material is shifted, the deviation gets smaller and smaller until a circular profile forms. Subse-
quently, the shear stress deviation varies in an oscillatory manner as shown in Fig. 9, which indicates the
circular profile is a stable design state to which no further improvement can be made. As a result, for singly
connected design domains, the circular profile yields a uniform stress distribution on the outer boundary.
More examples can be given to provide further evidence that, for different singly connected geometries with
a given area, only the circular profile presents the uniform stress distribution in the design boundary. Note
that this inference is exactly the same as the result from rigidity criterion by Polya (1948). In this sense, the
circular bar has both strength and rigidity advantages over all other shapes.

Fig. 8. Optimal exterior boundary design subject to constant volume: (a) initial design, (b) iteration 8 or steady state 5, (c) iteration 18
or steady state 10 and (d) final design (a circle).
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Fig. 9. Evolution histories of shear stress deviation and torsional rigidity.

4.2.2. Case 2: Interior boundary design

As with the analysis of Section 4.1.2, only inner holes or boundaries are allowed to be created in this
case. To observe the evolution process with an initial non-symmetrical geometry, a square hole is eccen-
trically located in the initial design domain as shown in Fig. 10(a). The process of material shifting is
displayed in Fig. 10(b)—(d). It can be seen that, during the optimization procedure, the centroid of the
internal hole is progressively moved from its initial position towards a symmetric location in relation to the
exterior boundary.

From the evolution histories of shear stress deviation and torsion rigidity changes as given in Fig. 11, it
can be identified that a circle located at the symmetric center of section (as shown in Fig. 10(d)) corresponds

Fig. 10. Optimal interior boundary design subject to the constant volume: (a) initial design, (b) iteration 10 or steady state 5, (c) it-
eration 23 or steady state 10 and (d) final design (iteration 55 or steady state 25).
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Fig. 11. Evolution histories of shear stress deviation and torsional rigidity.

to the stable status of both the shear strength and the torsional rigidity. This shows that, for doubly-
connected design domains, when the solid and void areas have the same centroid, the section has both the
highest torsional rigidity and the most uniform shear stress distribution.

At this point, it could be asked if the strength and rigidity can be improved further by increasing the
connectivity value of the cross-section. To answer this question, one more case with four initial internal
holes is demonstrated as shown in Fig. 12(a). With the evolution process, more and more solid elements are
shifted to locations most remote from the symmetric center of the section, while more and more void el-
ements appear in the central area. This is due to the fact that material gradually migrates from the
‘strongest’ location to the ‘weakest’ location. Thus, such a quintuply-connected initial domain (four inner
holes) automatically degenerates to a doubly-connected field (one centrally located circular hole). It shows

Fig. 12. Optimal interior boundary design subject to constant volume: (a) initial design, (b) iteration 34 or steady state 5, (c) iteration
49 or steady state 10 and (d) final design (iteration 68 or steady state 20).
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Fig. 13. Evolution histories of shear stress deviation and torsional rigidity.

that a single circular hole can best satisfy the iso-strength criterion. Also, from the stiffness viewpoint, it can
be identified that the section with a circular hole has the better rigidity than multiply-connected domain as
shown in Fig. 13. Such a conclusion is in excellent agreement with that of Gracia and Doblare’s investi-
gation (1988).

4.2.3. Case 3: Design for both exterior and interior boundaries

In this case, both exterior and interior boundaries are allowed to reform. It is expected to investigate
that, for a given area, what shape has a most uniform stress distribution. As illustrated in Fig. 14(a), a
56 x 56 mm? singly-connected solid square bar (meshed by 28 x 28 elements) is considered as the initial

a)

)

Fig. 14. Optimal both exterior and interior boundary design subject to constant volume: (a) initial design, (b) iteration 15 or steady
state 10, (c) iteration 25 or steady state 13 and (d) final design (iteration 48 or steady state 20).
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Fig. 15. Evolution histories of shear stress deviation and torsional rigidity.

design. Fig. 14(b)—(d) display the reorganization process of the solid material. Since the shorter the distance
of an element to the section centroid, the lower its shear stress level, this leads to more and more solid
elements migrating from interior region to the available exterior. As a result, a circular hole is gradually
created at the central area while the straight edges of the exterior profile are progressively encircled. After a
certain number of evolutionary cycles, an annulus with two concentric circles is formed, which represents
the ‘lowest’ stable state as shown in Fig. 14(b). Beyond this point, the evolution process produces no more
topological changes, rather a series of different sized rings is formed as displayed in Fig. 14(c) and (d). From
these figures, one can see the wall of the ring become thinner and thinner as the evolution process proceeds.
Accordingly, the deviation of shear stress levels becomes smaller and smaller as shown in Fig. 15. If the
design domain is large enough, the process would ultimately result in a ‘thin-walled’ ring, in which the shear
stress levels on the interior and the exterior boundaries become almost identical. In fact, this represents the
ideal iso-strength topology.

Furthermore, from the stiffness viewpoint, it can be seen that a larger ring indeed possesses a higher
torsional rigidity for a given area as illustrated in Fig. 15. In this example, the design space is considerably
larger than the given solid area, which allows such a design to be achieved in a bigger space. This also
answers the question raised in Section 4.1.3 that, when design space is large enough, the shape of the ring is
always formed to that with the maximum rigidity among all possible geometries. In this sense, the opti-
mization of strength and rigidity can be achieved simultaneously. In other words, a ring bounded by two
concentric circles has both the most uniform stress distribution and the highest torsional stiffness for any
possible multiply connected cross-section.

In fact, the design shown in Fig. 14(d) represents the last ESO steady state that can be achieved in such a
specific design domain. After such a steady state (SS = 20), further iteration will result in a non-circular
thin ring. As shown in the last several iterations in Fig. 15, although the rigidity increases further, the
deviation of shear stresses becomes worse. This indicates that the design domain limits to achieve a new
ESO steady state.

4.3. Effect of exterior boundaries on multiply-connected design

The third example presents some outer boundary variations and shows the effect of these on the opti-
mized inner boundary shapes. The example gives two different cases of outer boundaries as Fig. 16(a) and
(b). In the Greek cross shaft case, a concavely edged square with a 45° angle to the global coordinate system
has resulted. While in the octagonal shaft case, a concentric octagon with the same major axes as the
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Fig. 16. Effects of exterior boundaries on the optimal inner shapes: (a) cross shaft and (b) octagonal shaft.

exterior boundary is produced. Obviously, the outer boundaries have a significant effect on the inner ones,
in particular, when the inner boundary is close to the outer one. Indeed, the migration of the interior
boundary follows a path to make the gradient of the stress function more uniform. Obviously, a design with
almost equal thickness wall can best reflect the stress based optimality criterion.

4.4. Example of multiple material shafts

This example presents the design cases of the shafts composed of two isotropic elastic materials with
different shear moduli. In this example, two configurations of material combinations are considered as
shown in Fig. 17(a) and (b) respectively. It can be clearly seen that, to achieve the equal strength design, the
stronger material (with higher shear modulus) needs less volume than the weaker one. From the torsional
rigidity point of view, likewise, the stiffer material (with higher shear modulus) needs less volume than the
flexible material (with lower shear modulus) to produce uniform shear deformation.

4.5. Example of keyway designs

In practice, a designer frequently needs to consider a hollow shaft with a groove(s) required for a
keyway(s). The task could involve the determination of an optimal interior boundary shape from a strength
and rigidity point of view. Shown in Fig. 18(a)—(d) are the design cases of circular hollow shafts with the
exterior grooves, in which 1, 2, 4 and 6 exterior keyways are taken into account respectively. Through the
case of the single groove as shown in Fig. 18(a), it can be seen that the strength-driven topology is similar to
the rigidity based one by Hou and Chen (1985). This provides further evidence to indicate that iso-strength
design can share the same optimum shape with the stiffest one (Li et al., 1999¢). The remaining pictures
shown in Fig. 18(b)—(d) present more solutions for multiple groove cases of such typical design problems
leading to many keyways which could be seen to be similar to gear teeth.

Fig. 17. Design of shafts made by two materials (G,/G, = 3): (a) two layers and (b) three layers.



5676 Q. Li et al. | International Journal of Solids and Structures 38 (2001) 5661-5677

a) b)

Fig. 18. Circular hollow shafts with the exterior keyways: (a) single keyway, (b) two keyways, (c) four keyways and (d) six keyways.

5. Concluding remarks

This paper presents an ESO method for solving the shape design problem of shafts experiencing pure
torsional load. From the iso-strength point of view, the optimality criterion is determined in terms of the
resultant shear stress level of FE of the cross section area due to torsion. To meet different design re-
quirements, two approaches are developed, firstly by gradually removing less efficient material from a fully
populated design domain and secondly by progressively migrating material from the strongest location
(least necessary) onto the weakest location (most necessary). These two procedures have been well dem-
onstrated through a series of typical examples.

One of the distinct advantages of the present evolutionary method over classical ones is that it does not
involve any complicated mathematical operations and programming, nor does it require profound
knowledge of the FEA. Typically, a designer is capable of using the FE packages proficiently, but does not
have to access the source code of the FE program. To implement the presented ESO procedure, the user
does not need to know more than the basic output of elemental resultant shear stress and the standard input
of material properties of a FE model. In fact, when considering the analogy in the governing equations
between heat transfer and torsion problems, the Poisson equation can be solved via a heat solver included
in any FE programs, in which the values of temperature and heat fluxes can be translated into stress
function and shear stress level respectively (Li et al., 1999a and Steven et al., 2000). This makes the pre-
sented method to be of wide suitability and generality.

By comparing the optimum shapes resulting from the iso-strength criterion with those from the rigidity
criterion, a physical resemblance can be identified. This means that a fully stressed design and a most rigid
design can share the same geometry. To a certain extent, the stiffest design may be accomplished via a fully
stressed design, or vice versa. This provides a useful alternative for designers to deal with these two different
design criteria.
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